催眠的神经科学 | 如何身心协同促进自我修复
丘脑大叔
作者:Lancaster et al.来源:微信公众号:丘脑大叔(ID:RoseVorchid)早上好,我是脑叔,一个爱聊脑的家伙。虽然有些人喜欢将催眠理解为神秘主义的东西,但催眠背后的科学知识却非常深奥。催眠可以作为一种提供治疗的工具,让人放松,脱离自我意识的感觉,并采取一种暂停判断的心态。因此,他们可以更好地将注意力引向内部,更容易接受来自自我或治疗师的建议。在这种反思状态下,人们可以发挥他们的想象力。例如,你可以想象一个愉快的环境来保持平静,从而更好地控制身体和情绪。大多数人都能接受建议并从中受益。可靠的测试,如斯坦福催眠敏感性量表,是衡量“可催眠性”的金标准。研究表明,催眠在治疗疼痛、焦虑、抑郁、头痛和肠易激综合征等疾病方面具有疗效。还有许多案例报告显示其对治疗饮食失调、强迫症、恐惧症、呼吸短促和物质使用障碍的疗效,尽管需要研究来验证对个体的观察是否可以可靠地推广。下面将深入探讨催眠背后的神经学,以及促进治疗互动的人类身心之间错综复杂的关系。想你所想涉及视觉、听觉和触觉的感官催眠体验会激活大脑中与这些感官相关的区域。当你想象一个平静的环境,并在精神上调动感官时,你的大脑就会受到刺激,仿佛身临其境。即使是催眠引起的疼痛,也会激活通常由物理因素触发的大脑区域大网络,从而导致感知疼痛。就像想象可以轻易地使精神体验感觉真实一样,想象也有可能增加焦虑感。有些焦虑症患者会无意中利用想象力来描绘令人焦虑的情景,从而导致更加焦虑。这意味着,即使人们没有在现实生活中处于战斗或逃跑的情况下,也可能会根据想象中的威胁,产生与压力相关的某些化学物质,如肾上腺素,并进入血液。没有体力消耗的脑力训练也会导致肌肉力量的显著变化。想象运动时心率、血压和呼吸增加的生理反应已经被记录下来。在一项研究中,经过 12 周的心理肌肉收缩后,与对照组相比,两个实验组的肘部或手指力量分别出现了显著变化。通过反复尝试用意念激活某些肌肉群,中枢神经系统和肌肉区域之间的交流被认为得到了加强。这种联系加强的过程仍有待阐明。副交感神经兴奋为什么催眠会对身心产生如此大的影响?答案在于理解自主神经系统,它通过调节心率等非自主身体活动和器官功能来帮助人们维持生命。自主神经系统中负责放松的部分是副交感神经系统(PNS),通常被称为身体的“休息和消化”系统。催眠会在经历过程中和经历之后增加PNS的活动,导致身体放松,减少焦虑,减少疼痛感知。一项研究调查了催眠对手术患者PNS的影响。研究人员分析了镇痛/伤害感觉指数(ANI),该指数测量麻醉时PNS的活动,以及术后主观舒适度评分(0-10)。他们发现,当人们在麻醉前进入催眠状态时,PNS活动显著增加,这与手术后主观舒适度的提高有关。脑电波变化大脑活动涉及化学物质,如上面的肾上腺素的例子,但它也需要生理电来响应或产生信息。这种电神经活动的节律模式被描述为振荡或脑电波。脑电图(EEG)可以记录不同类型的脑电波,并且与某些大脑状态更相关。Five types of brainwaves.Source: Mac E. Lancaster例如,α波总是出现,但在清醒状态下会增加,而δ波在睡眠状态下会增加。另一方面,催眠与θ波的增加有关,因此可能是一种不同于清醒和睡眠状态的状态。θ波是一组较慢的波,振幅较高,与许多认知领域有关,包括注意力、决策、嗜睡、情绪唤醒以及记忆的存储和检索。一项研究发现,θ波活动与催眠、更高水平的可催眠性和催眠期间对疼痛的反应降低呈正相关。此外,高度可催眠的人在催眠和常规基线条件下都表现出更高的θ波活动。在催眠状态下,θ波的关联可能是情绪变化的基础。脑区关联诱导进入催眠状态会对多个脑区产生影响。虽然我们并不完全了解催眠所涉及的所有脑区,但背侧前扣带回皮层(dACC)、脑岛和背外侧前额叶皮层(DLPFC)似乎是催眠体验的关键因素。dACC 与许多认知领域有关,但可简化为具有三大功能:监控环境中的错误、冲突、焦虑和奖励。控制我们的行为,改变行为以适应被监控的环境。激励我们实现某种结果——通常是当前手头的任务。脑岛参与内部身体机能和自我监控,DLPFC参与工作记忆、任务参与和注意力。通过功能磁共振成像,我们可以看到,在催眠过程中,dACC 内的活动会减少,从而降低外部注意力。与此同时,脑岛和DLPFC之间的联系得到加强,从而增强了内部身体意识。虽然催眠的神经机制尚未完全明了,但实施催眠可以深刻影响我们的大脑和身体。我们可以选择在生活中练习催眠,从而收获认知和行为上的益处。作者:Mac E. Lancaster, BS, Aneesh Nudurupati, and Ran D. Anbar, MDReferences:Anbar, R. D. (2001). Self-hypnosis for management of chronic dyspnea in pediatric patients. Pediatrics. 107;395-396:e21.Anbar, R. D., Farnan R., & Lancaster M. E. (2023). Age regression in the treatment of needle phobia: A case report. American Journal of Clinical Hypnosis. https://doi.org/10.1080/00029157.2023.2261517Aubert, A. E., Verheyden, B., Beckers, F., Tack, J., & Vandenberghe, J. (2009). Cardiac autonomic regulation under hypnosis assessed by heart rate variability: spectral analysis and fractal complexity. Neuropsychobiology, 60(2), 104-112.Başar E. (2013). Brain oscillations in neuropsychiatric disease. Dialogues in Clinical Neuroscience, 15(3), 291–300. https://doi.org/10.31887/DCNS.2013.15.3/ebasarBoselli, E., Musellec, H., Martin, L., Bernard, F., Fusco, N., Guillou, N., Hugot, P., Paqueron, X., Yven, T., & Virot, C. (2018). Effects of hypnosis on the relative parasympathetic tone assessed by ANI (Analgesia/Nociception Index) in healthy volunteers: a prospective observational study. Journal of Clinical Monitoring and Computing, 32(3), 487–492. https://doi.org/10.1007/s10877-017-0056-5Derbyshire, S. W., Whalley, M. G., Stenger, V. A., & Oakley, D. A. (2004). Cerebral activation during hypnotically induced and imagined pain. NeuroImage, 23(1), 392–401. https://doi.org/10.1016/j.neuroimage.2004.04.033Elkins G. (2021). Hypnotizability: Emerging Perspectives and Research. The International Journal of Clinical and Experimental Hypnosis, 69(1), 1–6. https://doi.org/10.1080/00207144.2021.1836934Fernandez, A., Urwicz, L., Vuilleumier, P., & Berna, C. (2021). Impact of hypnosis on psychophysiological measures: A scoping literature review. American Journal of Clinical Hypnosis, 64(1), 36-52.Heilbronner, S. R., & Hayden, B. Y. (2016). Dorsal Anterior Cingulate Cortex: A bottom-up view. Annual Review of Neuroscience, 39, 149–170. https://doi.org/10.1146/annurev-neuro-070815-013952Jensen, M. P., Adachi, T., Tomé-Pires, C., Lee, J., Osman, Z. J., & Miró, J. (2015a). Mechanisms of hypnosis: toward the development of a biopsychosocial model. The International Journal of Clinical and Experimental Hypnosis, 63(1), 34–75. https://doi.org/10.1080/00207144.2014.961875Jensen, M. P., Adachi, T., & Hakimian, S. (2015b). Brain oscillations, hypnosis, and hypnotizability. American Journal of Clinical Hypnosis, 57(3), 230–253. https://doi.org/10.1080/00029157.2014.976786Jiang, H., White, M. P., Greicius, M. D., Waelde, L. C., & Spiegel, D. (2017). Brain activity and functional connectivity associated with hypnosis. Cerebral Cortex (New York, N.Y. : 1991), 27(8), 4083–4093. https://doi.org/10.1093/cercor/bhw220Kekecs, Z., Szekely, A., & Varga, K. (2016). Alterations in electrodermal activity and cardiac parasympathetic tone during hypnosis. Psychophysiology, 53(2), 268-277.(https://onlinelibrary.wiley.com/doi/abs/10.1111/psyp.12570)LeBouef T, Yaker Z, Whited L. Physiology, autonomic nervous system. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538516/ Accessed 12/11Orman D. J. (1991). Reframing of an addiction via hypnotherapy: a case presentation. American Journal of Clinical Hypnosis, 33(4), 263–271. https://doi.org/10.1080/00029157.1991.10402944Proescher E. J. (2010). Hypnotically facilitated exposure response prevention therapy for an OIF veteran with OCD. American Journal of Clinical Hypnosis, 53(1), 19–26. https://doi.org/10.1080/00029157.2010.10401744Ranganathan, V. K., Siemionow, V., Liu, J. Z., Sahgal, V., & Yue, G. H. (2004). From mental power to muscle power--gaining strength by using the mind. Neuropsychologia, 42(7), 944–956. https://doi.org/10.1016/j.neuropsychologia.2003.11.018Slimani, M., Tod, D., Chaabene, H., Miarka, B., & Chamari, K. (2016). Effects of mental imagery on muscular strength in healthy and patient participants: A systematic review. Journal of Sports Science & Medicine, 15(3), 434–450.VandeVusse, L., Hanson, L., Berner, M. A., & White Winters, J. M. (2010). Impact of self-hypnosis in women on select physiologic and psychological parameters. Journal of Obstetric, Gynecologic, and Neonatal Nursing : JOGNN, 39(2), 159–168. https://doi.org/10.1111/j.1552-6909.2010.01103.xVanhaudenhuyse, A., Ledoux, D., Gosseries, O., Demertzi, A., Laureys, S., & Faymonville, M. E. (2019). Can subjective ratings of absorption, dissociation, and time perception during “neutral hypnosis” predict hypnotizability?: An exploratory study. The International Journal of Clinical and Experimental Hypnosis, 67(1), 28–38. https://doi.org/10.1080/00207144.2019.1553765Walsh B. J. (2008). Hypnotic alteration of body image in the eating disordered. American Journal of Clinical Hypnosis, 50(4), 301–310. https://doi.org/10.1080/00029157.2008.10404297Waxenbaum JA, Reddy V, & Varacallo M. Anatomy, autonomic nervous system. [Updated 2023 Jul 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539845/ accessed 12/11Williamson A. (2019). What is hypnosis and how might it work?. Palliative Care, 12, 1178224219826581. https://doi.org/10.1177/1178224219826581Wolf, T. G., Faerber, K. A., Rummel, C., Halsband, U., & Campus, G. (2022). Functional changes in brain activity using hypnosis: A systematic review. Brain Sciences, 12(1), 108. https://doi.org/10.3390/brainsci12010108Yüksel, R., Ozcan, O., & Dane, S. (2013). The effects of hypnosis on heart rate variability. International Journal of Clinical and Experimental Hypnosis, 61(2), 162-171.作者简介:本文转载自微信公众号:丘脑大叔(ID:RoseVorchid),主要关注脑,偶尔吐吐嘈。